翻訳と辞書
Words near each other
・ Boclair Academy
・ BOclassic
・ Boclod
・ BOCM
・ BOCM Pauls
・ Boco
・ Boco River
・ Boco, Les Anglais, Haiti
・ Bocoa
・ Bochlewo
・ Bochlewo Drugie
・ Bochlin, West Pomeranian Voivodeship
・ Bochna
・ Bochner
・ Bochner identity
Bochner integral
・ Bochner measurable function
・ Bochner space
・ Bochner's formula
・ Bochner's theorem
・ Bochner–Kodaira–Nakano identity
・ Bochner–Martinelli formula
・ Bochner–Riesz mean
・ Bochner–Yano theorem
・ Bochnia
・ Bochnia County
・ Bochnia Salt Mine
・ Bocholt
・ Bocholt Disaster
・ Bocholt railway station


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bochner integral : ウィキペディア英語版
Bochner integral
In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.
==Definition==

Let (''X'', Σ, μ) be a measure space and ''B'' a Banach space. The Bochner integral is defined in much the same way as the Lebesgue integral. First, a simple function is any finite sum of the form
:s(x) = \sum_^n \chi_(x) b_i
where the ''E''''i'' are disjoint members of the σ-algebra Σ, the ''b''''i'' are distinct elements of ''B'', and χE is the characteristic function of ''E''. If ''μ''(''E''''i'') is finite whenever ''b''''i'' ≠ 0, then the simple function is integrable, and the integral is then defined by
:\int_X \left(\chi_(x) b_i\right )\, d\mu = \sum_^n \mu(E_i) b_i
exactly as it is for the ordinary Lebesgue integral.
A measurable function ƒ : ''X'' → ''B'' is Bochner integrable if there exists a sequence of integrable simple functions ''s''''n'' such that
:\lim_\int_X \|f-s_n\|_B\,d\mu = 0,
where the integral on the left-hand side is an ordinary Lebesgue integral.
In this case, the Bochner integral is defined by
:\int_X f\, d\mu = \lim_\int_X s_n\, d\mu.
It can be shown that a function is Bochner integrable if and only if it lies in the Bochner space L^1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bochner integral」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.